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Abstract— Robotic exoskeletons are increasingly being used
for neurorehabilitation, due to a number of perceived advan-
tages. Once such advantage is the potential to use the large
amounts of previously unavailable measurements to provide
continuous assessment of the patient. This study investigates
the validity of such measurements through an experimental
protocol. Reaching movements within and outside an upper-arm
rehabilitation exoskeleton (ArmeoPower) of 10 healthy subjects
are compared using five commonly-used kinematic metrics
(Peak Speed, Time to Peak Speed, Curvature, Smoothness,
Accuracy). The study finds that (1) the robotic exoskeleton
significantly affects the reaching movements of healthy subjects,
(2) the measurements of the exoskeleton accurately represent
the movements of the wrist, and (3) evolution of the in-
exoskeleton movements over multiple sessions is indicative of
changes in movements outside the robot, even though differ-
ences remain – suggesting that evolution of this data may be
used to monitor patient progress.

I. INTRODUCTION

Robotic devices are increasingly being studied and used

as tools for neurorehabilitation. The use of robotic devices

for this purpose are thought to have a number of benefits,

including the ability to conduct intensive sessions, controlled

and repeatable motions, and the availability of measurements

and data [1], [2].

The numerous sensors on robotic devices provide a mul-

titude of information not previously available with tradi-

tional neurorehabilitation techniques. Information collected

by these robotic devices can potentially be used to increase

the frequency, accuracy and precision of clinical assessment

and thus lead to a better understanding of the recovery

process and customisation of the rehabilitation process.

Although several robotic devices already provide assess-

ment facilities [3], care should be taken when such data is

used in a clinical context. Indeed, the lack of mechanical

transparency of the robotic systems may lead to undesired or

uncontrolled effects of the system on patients’ limbs while

performing the assessment [4] and thus bias the measure-

ments such that they no longer accurately reflect the true

performance of the patient.

In the present study, we investigated how data from a

robotic upper-limb exoskeleton (ArmeoPower from Hocoma,

Switzerland) may be used for clinical evaluation through

analysis of two objectives. First, we characterise the un-

controlled effects of this exoskeleton on the movements of
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healthy subjects. Secondly, we check the accuracy of the data

itself, when compared to external sensors. This is achieved

through the observation of classical movement metrics, based

on ideal hand movements [5] during reaching tasks.

This study finds that assessment using robotic rehabili-

tation devices should be approached with caution, as the

metrics calculated on reaching movements attempted whilst

‘In Robot’ can be significantly different when compared with

‘Free’ movements, and as such, do not necessarily accurately

represent the reaching capabilities of the patient. However,

the data recorded by a robot can accurately represent the

(affected) physical movement. Additionally, evolution of

the movement ‘In Robot’ is indicative of changes in the

movement in ‘Free’ space, indicating that such data may be

suitable for use in inter-robot comparisons.

II. METHODS

This study utilises partial results from an experiment

comparing the reaching movements in two conditions – ‘Free

Reaching’ and ‘Robot Reaching’ (see Fig. 1). Under the

‘Free Reaching’ condition, subjects wore only lightweight

sensors, and thus it is assumed that the subjects’ natural

movements were not affected. In ‘Robot Reaching’, subjects

perform the actions within the robotic exoskeleton set to

‘transparent mode’ – designed to compensate only for the

robot’s own friction, weight and mechanical properties. The

study was approved by the University of Melbourne Engi-

neering Ethics Advisory Group under the ethics identification

number #1442734.

Fig. 1: Experimental Setup in ‘Free Reaching’ (left) and

‘Robot Reaching’ (right) conditions. Black straps shown in

‘Free reaching’ hold lightweight magnetic sensors.

A. Experimental Setup

Ten naı̈ve, healthy subjects (28.2 ± 6.1 years old), partic-

ipated in the study. The full protocol included five sessions

(see Fig. 2). The first session consisted of a ‘Free Reaching’

block followed by a ‘Robot Reaching’ block. The last session

consisted of a ‘Robot Reaching’ block followed by a ‘Free



Reaching’ block. Intermediate sessions consisted of a ‘Robot

Reaching’ block only. During each block, subjects completed

the reaching task 120 times with their dominant hand (left

dominant: n = 1, right dominant: n = 9). Only results from

the first and last sessions are reported in this paper. The

remaining sessions were included in the experiment for a

future study analysing the learning trends in more detail.
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Fig. 2: Sessions and conditions order. Only results of ses-

sion #1 (first) and #5 (last) are represented here.

1) Data collection: Measurements were made using the

3D Guidance trakSTAR system (Ascension Technology Cor-

poration, USA) providing 6-dof position and orientation

measurements at three magnetic sensors, placed on the

shoulder, the end of the humerus, and the wrist, recording at

approximately 30Hz. In ‘Robot Reaching’ trials, data from

the exoskeleton was also recorded. This data included the

calculated position of the wrist recorded at approximately

60Hz. In trials where both sets of data were available, the

two datasets were synchronized in post-processing.

2) Reaching Task: A 3D virtual environment (see Fig.3)

was presented to the subject, in which the position of the

cursor was mapped to the position of the magnetic sensor on

the wrist. Subjects were asked to move from a home position

to a target and stop within one second. Commencement

of the movement was to be when an audible tone was

played through the computer’s speakers. A countdown was

also presented visually on the screen. On completion of

a successful movement – one in which the subject had

reached the target, and stayed within the target for 0.4s –

an affirmative tone was played and a score was incremented.

If the movement was not successful – the subject had either

not reached the target position within 1s, or had reached it

and moved away from it – a different tone was played and

the score not incremented.

Within the virtual environment, the x-axis corresponded to

left/right, y to down/up, and z to backwards/forwards. The

axes were scaled with respect to the distance between the

shoulder and humerus sensor at an initial calibration stage,

such that all targets were reachable from within the robot.

Fig. 3: Virtual environment. Left: target one (blue) and cursor

(red). Right: the six different targets (blue), home position

target (green) and cursor (red).

A total of six different targets were used (listed in Table I

and seen in Fig. 3). The home position was located in the

coronal plane aligned with the shoulder of the reaching

arm, at a position requiring approximately 45◦ shoulder

flexion, and 90◦ elbow flexion. All movements required

forward motion, to the up-left, directly up, up-right, down-

left, directly down and down-right from the home position.

The locations of these targets were chosen such that they

were of significant distance from the home position and

reachable when the subject was in the exoskeleton.

TABLE I
TARGET POSITION (VIRTUAL COORDINATES)

Target x y z Target x y z

Home 0.5 0.5 0.0 - - - -

1 0.3 0.8 0.45 4 0.35 0.15 0.5

2 0.5 0.8 0.55 5 0.5 0.15 0.85

3 0.7 0.8 0.45 6 0.65 0.15 0.5

3) Protocol: In each session, subjects were given as much

time as desired to familiarise themselves with the 3D envi-

ronment and task, in a ‘training mode’ in ‘Free Reaching’

conditions. The Reaching Task was then completed under

‘Free Reaching’ and/or ‘Robot Reaching’ depending on the

session as described above. Each target was presented for

10 successive attempts, in order (1-6), twice, for 120 total

actions. Subjects were given as much time as desired to rest

between actions, and an enforced longer break between each

set of 10 actions, to minimise the effects of fatigue.

B. Performance Metrics

To assess the subjects’ movements, five commonly used

kinematic metrics were applied on the wrist trajectories.

These metrics were chosen for their respective comple-

mentarity and independence, and for their coverage of the

different important aspects considered during a rehabilitation

treatment: movement control, movement efficiency, move-

ment quality and ease of movement [3].

The time period for each trial was considered to be the

one second interval after the end of the countdown. Only

the wrist position (the wrist sensor for the magnetic sensor

and the wrist position for the exoskeleton) were considered.

1) Peak Speed: The speed was calculated in real-world

coordinates, using a first-order Euler approximation on the

position data. The peak speed was then determined as the

largest value in this speed trajectory.

2) Time of Peak Speed: On identification of Peak Speed,

the corresponding time stamp relative to the start of the

movement was calculated.

3) Smoothness: The smoothness metric used was the

Spectral Arc Length (SAL) Smoothness as defined in [6].

It was calculated using the wrist speed, after a re-sampling

at 60 Hz (using a cubic spline interpolation), as:
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where V (ω) is the Fourier magnitude spectrum of the

speed profile, V (0) is the DC magnitude, and [0, ωc], ωc > 0
is the frequency band considered. In this study, ωc = 20Hz.

4) Curvature: Curvature was measured as the integral

of the distance of the reaching trajectory from a straight

line connecting the home position and the final position (at

t = 1s). The distance of the trajectory from the straight

line connecting the two points is calculated as dstr(t). The

measure of curvature is then given as:

C =

∫

1

0

dstr(t)dt (2)

5) Accuracy: Accuracy was defined as the shortest dis-

tance of the cursor to the target in virtual coordinates at

t = 1s. A zero value indicated that the cursor was in the

target. As the accuracy metric is dependant on the virtual

space coordinates, it was only computed using magnetic

sensor data, thus no comparison to the robotic data is given.

C. Analysis

Two independent comparisons were made for this study.

The first relates to the effect of the robotic exoskeleton on the

movement of the subject – that is, the change in the kinematic

reaching movement. For this comparison, the data captured

by the magnetic sensors from the ‘Free Reaching’ trials is

compared with that from the ‘Robot Reaching’ trials. The

second comparison relates to the validity of the data captured

by the robotic device, compared with that captured by the

magnetic sensors. For this, the data captured by the magnetic

sensors during the ‘Robot Reaching’ trials is compared with

data captured by the robotic device during the same trials.

For each metric, the comparison between the two data sets

was tested using a Wilcoxon Signed-Rank Test [7].

III. RESULTS

A. Effect of the robotic exoskeleton on the movement of the

subject

The values of each metric, calculated from the measure-

ments of the magnetic sensor, computed for each block in

the first and last sessions, and grouped for the 10 subjects

and 120 trials, are presented in Fig. 4. The differences in the

peak speed, time to peak speed, smoothness and accuracy

were found significant (p < 10−3).

Table II presents the average difference between the ‘Free

Reaching’ and ‘Robot Reaching’ for each metric, as mea-

sured by the magnetic sensor, in the first and last sessions.

TABLE II
AVERAGE EFFECT OF ROBOT FOR EACH METRIC

Metric (unit) First Last

Peak speed (m.s−1) -0.25 -0.11

Time to peak speed (s) 0.10 0.09

Smoothness (-) -0.04 -0.03

Curvature (m.s) -0.22 1.27

Accuracy (m) 0.025 0.007

B. Validity of the data captured by the robotic device

The average difference between the metrics computed

based on the magnetic sensor data and the robotic exoskele-

ton’s data during the ‘Robot Reaching’ blocks of the first

and last sessions are reported in Table III. None of these

differences have been found significant.

TABLE III
DIFFERENCE BETWEEN DATA CAPTURED BY THE ROBOTIC

DEVICE AND THE MAGNETIC SENSOR (MEAN ± S.D.)

Metric (unit) First Last

Peak speed (m.s−1) 0.05± 0.07 0.05± 0.10

Time to peak speed (s) −0.02± 0.08 −0.01± 0.08

Smoothness (-) 0.016± 0.022 0.018± 0.028

Curvature (m.s) −0.30± 1.3 −0.17± 1.3

* Calculated as Robotic Data Metrics minus Magnetic Data Metrics

IV. DISCUSSION

The results of this experiment suggest four distinct obser-

vations. Firstly, the data captured by the robotic exoskeleton

is comparable to that of an external sensor. Secondly, the

robotic exoskeleton has a significant effect on the movements

of the subjects. Thirdly, the subjects are able to adapt to

the environment presented by the exoskeleton in order to

complete the task. Finally, evolution of non-task related

metrics during the ‘Robot Reaching’ translates to similar

changes in these metrics in ‘Free Reaching’.

On this first observation, we note that Table III indicates

that the metrics calculated on this robotic exoskeleton data

and magnetic sensor data are equivalent. Furthermore, the

Wilcoxon Test did not indicate a significant difference be-

tween these data sets. Thus, it is concluded that metrics

calculated using the data of the robotic exoskeleton are

accurate. As such, the remainder of the analysis is completed

using the magnetic sensor data only, and it can be assumed

that the robotic exoskeleton will produce similar results.

Secondly, the robotic exoskeleton can affect the ‘natural’

movements of the subjects. In both sessions, the Peak Speed

and Time to Peak Speed are significantly reduced and in-

creased respectively, when movements are performed within

the exoskeleton. This indicates that the subjects found it more

difficult to complete the movement within the exoskeleton.

This was also confirmed by the majority of the subjects,

who noted that the exoskeleton felt ‘heavy’. With respect

to movement quality, smoothness was also affected by the

exoskeleton, suggesting that subjects performed more move-

ment corrections or adjustments to successfully complete the

task. However, the lack of difference in curvature suggests

that the shape of the wrist trajectories is not changed in

a global manner. These results align with those reported

in [4] suggesting that exoskeletons can still apply undesired

and uncontrolled forces on the subject’s limb, even when

designed to not affect movement. This imperfection of the

robot’s mechanical transparency suggests care should be

taken when attempting to directly use the data for clinical

assessment, as it may not truly reflect the capabilities of
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Fig. 4: Each metric as calculated on the magnetic sensor data for each block. *** indicates a significant difference between

this pair of values ( p < 10−3).

the patient when not in the robot, particularly for faster

movements as in this experiment.

Thirdly, the differences reported on the accuracy metric

suggest that subjects have more difficulty in completing a

task within the exoskeleton compared to outside. However,

this difference is reduced after several sessions within the

robot. This result suggests that the subjects can learn to

overcome the robotic perturbations to perform the task.

Finally, a global evolution of the other – non-task-related –

metrics is observable after several sessions of ‘Robot Reach-

ing’. This can be seen through the differences in the ‘Robot

Reaching’ metrics in the first and last sessions. However,

similar differences remain between ‘Robot Reaching’ and

‘Free Reaching’ within each session. This therefore suggests

that the robotic data can capture the evolution of these

metrics, despite the absolute values of these metrics not

corresponding to the ‘Free Reaching’ performance. Further

analysis may be performed on these differences to determine

the differences due to the (1) learning of the task, and (2)

adaptation to the robot perturbation.

V. CONCLUSION

In this experiment, the uncontrolled mechanical effects

of the ArmeoPower affected the reaching trajectories of the

subjects, suggesting that assessments of patients’ movement

capabilities using data captured by this robotic exoskeleton

should be approached with caution. Such uncontrolled effects

should also be considered when basing assessments on

movements in other exoskeleton devices. Nevertheless, the

robotic data did reflect an evolution of classical movement

metrics and may thus be used for inter-robot comparisons.

This may be incorporated into a clinical evaluation if the bias

induced by the exoskeleton is accounted for. Furthermore, the

data captured by the robotic device accurately represented the

movements themselves, thus this data can be used calculate

accurate metrics. Further investigations are required to deter-

mine the relative role of learning of the robotic perturbation

against changes in movement strategies for the same task

while in a robotic exoskeleton.
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